Generating Functionals and Lagrangian PDEs

نویسندگان

  • Joris Vankerschaver
  • Cuicui Liao
  • Melvin Leok
  • Jerrold E. Marsden
چکیده

The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi’s solution to the Hamilton-Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the socalled multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi’s solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Time Euler-Lagrange Dynamics∗

This paper introduces new types of Euler-Lagrange PDEs required by optimal control problems with performance criteria involving curvilinear or multiple integrals subject to evolutions of multidimensional-flow type. Particularly, the anti-trace multi-time Euler-Lagrange PDEs are strongly connected to the multi-time maximum principle. Section 1 comments the limitations of classical multi-variable...

متن کامل

A Convex Approach for Stability Analysis of Coupled PDEs using Lyapunov Functionals

Abstract: In this paper, we present an algorithm for stability analysis of systems described by coupled linear Partial Differential Equations (PDEs) with constant coefficients and mixed boundary conditions. Our approach uses positive matrices to parameterize functionals which are positive or negative on certain function spaces. Applying this parameterization to construct Lyapunov functionals wi...

متن کامل

Local Superfield Lagrangian BRST Quantization

A θ-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter θ. We solve the problem of describing the quantum action and the gauge algebra of an L-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system w...

متن کامل

Basic features of General Superfield Quantization Method for gauge theories in Lagrangian formalism

The rules for superfield Lagrangian quantization method for general gauge theories on a basis of their generalization to special superfield models within a so-called θ-superfield theory of fields (θ-STF) are formulated. The θ-superfield generating functionals of Green’s functions together with effective action are constructed. Their properties including new interpretation and superfield realiza...

متن کامل

Algebra properties for Sobolev spaces- Applications to semilinear PDE's on manifolds

In this work, we aim to prove algebra properties for generalized Sobolev spaces W ∩L on a Riemannian manifold, whereW s,p is of Bessel-typeW s,p := (1+L)(L) with an operator L generating a heat semigroup satisfying off-diagonal decays. We don’t require any assumption on the gradient of the semigroup. To do that, we propose two different approaches (one by a new kind of paraproducts and another ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011